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ABSTRACT

During acoustically stimulated LIGA development, a wafer receives sound waves from
both sides at a wide variety of incidence angles that vary in time depending on the
orientation of the wafer relative to the multiple transducers that are typically actuated in a
periodic sequence. It is important to understand the influence of these variables on the
transmission of energy through the wafer as well as the induced motion of the wafer itself
because these processes impact the induced acoustic streaming of the fluid within
features, the mechanism presently thought responsible for enhanced development of
LIGA features. In the present work, the impact of wafer elasticity on LIGA development
is investigated. Transmission waves, wafer bending waves, and the related concepts such
as critical bending frequency, mechanical impedance, coincidence, and resonance, are
discussed.

Supercritical-frequency incident waves induce supersonic bending waves in the wafer.
Incident wave energy is channeled into three components, transmitted, reflected and
energy deposited to the wafer, depending on the wafer material, thickness and wave
incidence angle. Results show at normal incidence for a 1–mm PMMA wafer, about 47%
of the wave energy is deposited in the wafer. The wafer gains almost half of the incident
energy, a result that agrees well with the Bankert et al measurements.

In LIGA development, transmitted waves may sometimes produce strong acoustic motion
of the developer on the wafer backside, especially for the so-called coincidence case in
which almost all incident wave energy transfers to the backside. Wafer bending waves
cause wafer oscillation at high frequency, promoting the development process, but
features shaking may weaken their attachments to the substrate. Resonance is not likely
for the entire wafer, but may occur in short and wide wafer feature columns, which are
least likely to break away from the substrate, perhaps resulting in good agitation of the
fluid in adjacent feature cavities.
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INTRODUCTION

In previous work, we modeled the acoustic agitation in a LIGA development tank for a
rigid wafer and obtained the induced acoustic pressure wave pattern in the tank which
agreed well with the measured power intensity distribution.[1,2] However, a rigid wafer
does not have the same response as an elastic wafer. Actually, the response of an elastic
wafer is far more complicated, resulting not only in reflected waves as for a rigid wafer,
but also in transmitted waves and forced wafer bending waves that depend on the wafer
stiffness and inertia. In addition, the finite wafer size produces natural modes and natural
frequencies that may interact with the incident waves resulting in resonance. The related
concepts such as critical frequency, mechanical impedance, and coincidence, play
important roles. Table 1 lists a comparison between the response of rigid and elastic
wafers for various aspects of wave-wafer interaction.

Table 1. Response of Rigid Wafer and Elastic Wafer to Acoustic Waves

 In the present work, the impact of wafer elasticity on LIGA development is investigated
through analysis and discussion of the issues outlined in Table 1.

Acoustically stimulated development tanks typically have several rectangular transducer
bars mounted in the floor or the sidewall of the tank.  To avoid overheating of these
acoustic drivers they are usually operated in sequence with each one powered for only a

Compared Items Rigid Wafer Elastic Wafer

Response Waves in Fluid Full reflection wave Reflection and transmission waves

Energy Incident energy
=  Reflection energy

Incident energy = Reflection energy
+  Transmission energy

+  Energy deposition to wafer
Wave in Wafer None Bending waves may be induced

Wafer Movement None Wafer particle vibration

Wafer Critical Frequency None Supercritical and subcritical cases

Wave Impedance
At Interface

Fluid impedance
at rigid body becomes •

Fluid impedance and
Mechanical impedance

Wafer Stiffness and Inertia N/A Stiffness or mass controlled
response

Coincidence N/A Stiffness offsets Inertia

Resonance N/A Natural frequencies are excited

Transmission Loss or
Sound Reduction Index No transmission Provides Reflection energy and

Energy deposition to wafer

Wafer Back Agitation
Some areas may not be

reached by reflected waves
from tank and free surface

By transmitted waves, wafer
bending waves, and reflected waves

from tank and free surface
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few seconds at a time.  The wafer is usually held either vertically or horizontally at a
fixed location, as illustrated schematically in Figure 1.  Thus, over the course of a
transducer cycle a vertical wafer receives waves from both sides at a wide variety of
incidence angles.  As a result, it is important to understand the transmission of energy
through the wafer to fluid on the other side as well as the induced motion of the wafer
itself.  Both of these processes impact the induced acoustic streaming of the fluid within
features, the mechanism presently thought responsible for enhanced development of
LIGA features.  In addition to this primary enhancement mechanism it is also possible
that other processes such as acoustic bubble growth and collapse or high frequency
substrate or feature motion may play a role that is not yet understood.

The remainder of this paper is organized as follows.  The next two sections provide a
brief introduction to wave motions and wave speeds
in solid materials.  This is followed by three sections
(4.Critical Bending Frequency, 5.Wave Impedance,
and 6. Coincidence) which lay the background
needed to fully understand section 7. (Transmission
Losses and Energy Deposition in a wafer). All of
these results are based upon wave transmission in
plates of infinite extent.  Sections 8 and 9 address the
issue of the finite wafer size and also apply the same
methodology to the scale of a single feature element
such as a free standing PMMA column.  Section 10
summarizes all of the results.  Some readers may wish to read lightly over Sections 4
through 6, and focus their attention on the applications in Sections 7 through 10.

WAVES IN SOLIDS INDUCED BY ACOUSTIC WAVES

During the LIGA development process, acoustic waves incident on a rigid wafer would
result in full reflection of acoustic energy from the wafer.  However, this is not true for an
elastic wafer. In fact, elastic waves are induced in the wafer; this energy exchange
between acoustic waves and an elastic wafer may accelerate the development process, but
may also have negative effects. To study this, we consider an elastic wafer and examine
the elastic waves that can be excited by an incident acoustic wave.

Two basic waves, longitudinal waves and shear waves, and many of their hybrid
combinations are possible in solids. Bending waves (flexural waves or transverse waves)
can only be exited in an elastic wafer by incident acoustic waves and exchanges of
energy with the fluid.[3]

Figure 1 shows the wave patterns and particle movements of the two basic waves and the
bending wave. Longitudinal waves and acoustic waves are compressive waves enabled
by the compressibility of the media, while shear wave can only exist in solids since fluids
cannot withstand shear stresses or store shear energy.

Figure 1. Layout of Development Tank
     (with six transducer bars at bottom)

wafer
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No net transport of the medium will result in wave propagation, because particles of the
medium only vibrate around their equilibrium positions. The particle displacements in a
longitudinal wave are along the direction of wave propagation except for the Poisson
contraction or expansion in a quasi-longitudinal wave, as shown in figure 2. Even though
the shapes of the shear wave and bending wave look alike, the particle displacements in a
bending wave are along the direction perpendicular to the wave propagation and include
the effects of rotary inertia and shear deformation. Note that the deformation in the figure
is exaggerated to be clearly seen.

Among the waves propagating in bars, beams, and plates, bending waves play a
significant role in structure-fluid interactions.[4] When the plate is acoustically excited,
acoustic waves transfer energy to the plate by inducing a bending wave propagating in
the plate. When a plate is mechanically excited, bending waves radiate acoustic energy
into the fluid. Since the particle displacements and velocities are along a direction
perpendicular to wave propagation, they exchange energy effectively with the adjacent
fluid particles.

Although the wafer placed in the development bath typically consists of a patterned
PMMA layer bonded to a silicon substrate, the important principle will be illustrated for a
wafer having uniform material properties.

WAVES SPEEDS

The speeds of wave propagation are Cl = (E /r)1/2 for longitudinal waves in a beam, CL =
(E /r (1- n2))1/2 for quasi-longitudinal waves in a  plate, and Cs = (G /r)1/2 for shear waves
(where E  is Young’s modulus, G is the shear modulus, r  is the density, and n  is
Poisson’s ratio). These wave speeds depend only on the material and thermal properties
of the media and are independent of frequency. Thus, they are non-dispersive waves, so
the wave shapes will always remain the same for any wave frequency.  The speed of non-
dispersive waves may also be expressed as, w /k, the ratio of circular frequency to wave
number where k = 1/l and l is the wavelength.

 
 

Figure 1. Plate Deformation Patterns by Waves 

Quasi-longitudinal Wave

Transverse Shear Wave

Flexural (Bending) Wave

Figure 2. Plate Deformation Patterns by Waves
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Unlike non-dispersive waves, the bending wave speed, CB = [p CL f h / (3)1/2]1/2 (f wave
frequency,  h thickness ) and hence CB ~ (fh)1/2, depends not only on medium properties
but also on wave frequency (or wave number) and the plate (or beam) thickness.
Therefore, the wave speed is greater for a thick wafer than a thin wafer due to the
stiffness of the wafer, and is greater for a high frequency wave than a low frequency
wave due to the more efficient energy exchange. Such waves are said to be dispersive
because different frequency components travel at different speeds.

The speed of wave energy propagation is the group speed, Cg = dw /dk. It is the same as
the wave speed for a non-dispersive wave (dw / dk = w /k) but is different from the wave
speed for a dispersive wave. The group speed of bending waves can be obtained from the
expression for CB as Cg = 2 CB, twice as fast as the bending wave speed, so energy
transport of bending waves is very efficient, especially for high-frequency waves and for
thick wafers. The dispersive nature of bending waves is especially important in fluid-
structure coupling, as in the following example.

The LIGA group at Sandia Laboratories used Good Fellow Perspex brand CQ grade
PMMA sheets having the following properties:  E = 2.4-3.3 ¥ 109 Pa, r = 1190 kg/m3, n
= 0.4, so Cl = 1600 m/s, CL = 1800 m/s, and Cs = 950 m/s. For PMMA at   f = 1 MHz, CB
= 1800 m/s, Cg = 3600 m/s for h = 1 mm, and CB = 402.5 m/s, Cg = 805 m/s for h = 50
mm. The ratio of bending wave speed to quasi-longitudinal wave speed is CB / CL = (p f h
/ CL(3)1/2)1/2, which becomes (10-3 f h)1/2 for PMMA. Therefore, at f = 1 MHz, a 1–mm
wafer is more efficient in transferring wave energy than a 50–mm thick feature column
since CB = CL for the wafer and CB = CL / (20)1/2for the feature column, indicating two
very different wave energy propagation speeds. Similarly, at h = 1 mm, a 1 MHz wave is
more efficient in transferring wave energy than a 0.5 MHz wave. The corresponding
properties of the silicon substrate are E = 1.3-1.9 ¥ 1011 Pa, r = 2330 kg/m3, n  = 0.2, so
Cl = 8542 m/s, CL = 8718 m/s, and Cs = 5241 m/s. The qualitative observations made for
PMMA also hold for a silicon wafer.

CRITICAL BENDING WAVE FREQUENCY

In this section we show that 1 MHz sound waves can produce bending waves only in
PMMA wafers having a thickness exceeding 689 mm and in silicon wafers having a
thickness exceeding 142 mm. An incident acoustic wave may induce a bending wave
having the same wave speed and frequency in an infinitively large plate when the
incident wave frequency is greater than the plate’s critical frequency. A bending wave
critical frequency of a solid plate, fC, is defined as the frequency at which the bending
wave speed and frequency are equal to that of an acoustic wave in the adjacent fluid, so fC
= c2(3)1/2/(p CL h) since CB = c, fB = f. Therefore, fC is inversely proportional to the
thickness h of the plate (or beam), and the product h fC depends only on the properties of
material and medium. When incident acoustic waves have multiple frequencies, then the
lowest critical frequency is important. No bending wave with a frequency lower than this
critical frequency will be induced. This will be explained after the following paragraph.
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Figure 3 shows bending wave-speed curves, changing with wave frequency for a variety
of PMMA and silicon wafer thickness compared with acoustic, longitudinal, and shear
wave speeds. Critical frequency is the frequency at which the bending wave curve for
each PMMA thickness intersects the acoustic wave line. Acoustic wave speed is taken as
1500 m/s (the value from water), a value between a higher longitudinal wave speed and a
lower shear wave speed (the Young’s modulus E is generally much greater than the shear
modulus G). Unlike the constant wave speeds (non-dispersive) for acoustic, longitudinal,
and shear waves, the bending wave speed spreads widely and is proportional to (h f)1/2.
Note that longitudinal wave speed is too high to plot in Figure 3b,

Similarly, figure 4 presents the wave
number curves. The large wave number
results in the small wave speed, so the
bending wave curves sequenced from top to
bottom in Figure 3a correspond to the
curves from bottom to top in Figure 4. In
the figures, the critical wave frequency is
575 kHz for a 1.2-mm PMMA plate and
1723 kHz for a 0.4-mm plate, so the thick
wafer has the low critical frequency due to
the wafer stiffness (fc ~ (h)–1). The critical
frequency of a 50 or 100-mm PMMA
feature column is far beyond 1 MHz,
indicating that no induced bending waves
in the small feature column by an incident
1-MHz acoustic waves. However, small
feature columns may differ from wide plates because their dimensions are much smaller
than the acoustic wavelength. On the other hand, the critical frequencies of a 400 or
1200-mm silicon wafer is far below 1 MHz, as indicated in Figure 3b.
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Figure 5a gives critical frequency and bending wave speed changing with PMMA and
silicon wafer thickness, respectively. At the upper left corner of the Figure 5a, quasi-
longitudinal wave speeds of Good Fellow CQ PMMA sheet are presented. The critical
frequency decreases as the thickness of PMMA increases due to the (h)–1 law. For any
PMMA sheet thickness, draw a vertical line upward to intersect the critical frequency
curve (fc) and the appropriate bending wave curve (CB). Whether or not bending waves
will be induced in the PMMA plate depends on the point on fc that is lower or higher than
the point on CB. In Figure 5b, critical frequencies for silicon are much lower due to its
high longitudinal wave speed. Thus, bending waves can only be induced by 1 MHz
waves in a PMMA wafer having thickness greater than 689 mm and in a silicon wafer
having thickness greater than 142 mm.

To explain this, the wavelength ratio of bending and acoustic waves, lB / l  =
(f / fC )1/2 , is a very important parameter in the fluid-solid wave interaction for any
incident wave frequency f and its wavelength l. A bending wave wavelength is larger
than the acoustic wavelength as acoustic frequency is higher than the critical frequency:
lB > l , for f > fC , and smaller as acoustic frequency is lower than the critical frequency:
lB < l , for f < fC. In the latter case, bending waves are theoretically impossible.

Consider an incident acoustic wave encountering an infinite plate (x-axis) with an
incidence angle q  (see Figure 6). If an induced bending wave of the same frequency is
propagating in the plate, then at the fluid-plate interface, the acoustic wave number vector
k is discomposed into a bending wave number kB, and a wave number ky denoting a wave
perpendicular to the wafer. Thus k2 = kB

2 + ky
2 and kB = k sin q. This requires kB < k,

implying CB > c, lB > l and hence f > fC. Therefore, only an acoustic wave having
frequency higher than the critical frequency of the plate is able to induce a forced
bending wave. This induced bending wave is always supersonic, and its wavelength is
always greater than the acoustic wavelength, as shown in figure 6. In other words, no

Figure 5a. Bending Wave Speed and Critical
Frequency of PMMA Wafer (CL=1800 m/s)

Figure 5b. Bending Wave Speed and Critical
Frequency of Silicon Wafer (CL= 8718 m/s)
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bending wave will be induced in the plate when
the acoustic wavelength is greater than the
bending wavelength since a real bending wave
number kB does not exist. The special case in
which kB = k , q = p/2, is excluded and will be
explained later.

To explain the above statement rigorously,
assuming that at the interface the acoustic
pressure can be expressed approximately to a
plane wave pressure,

p(x, y, t) = pmax exp(-i kBx)exp(i kyy) exp(iw t).

By the linear Y- momentum equation of the fluid and the fluid-plate interface matching
condition, it follows that

uy plate = (uy fluid)y = 0 = -(∂p/∂y)y = 0 /(iwr0)

pmax =  k cr0 (uy plate)max / (k2 – kB
2)1/2.

Note that here ky = -(k2 – kB
2)1/2 is toward the plate. When f > fC,  kB < k, lB > l ,  pmax is

real, and the acoustic wave at the interface does induce a forced bending wave in the
plate. When f < fC,  kB > k, lB < l , pmax is imaginary and the exp(i kyy) term in p(x, y, t)
becomes exp[-(kB

2 – k2)1/2y] that does not represent a wave, but a fast decaying factor
toward the plate. In this case, only a surface wave is formed on top of the plate, i.e., no
bending wave is induced in the plate or no energy exchanges with the plate. When f = fC
at critical frequency, kB = k, lB = l , sin q = 1, q  = p/2,  wave propagates parallel to the
plate, so  pmax Æ • . In reality, no bending wave will be possible in this case because the
extremely large wave pressure indicates the extremely large resistance for energy transfer
from the fluid to the plate.

For a plate (or beam) with a finite size, the situation becomes more complicated. Excited
by acoustic pressure, the induced forced bending wave vibrates at the incident acoustic
frequency that is independent of natural frequencies. The natural frequencies are a
function of the plate properties that depend on its mass or inertia, stiffness or elasticity,
and boundary conditions. Resonance will be encountered when the acoustic frequency
coincides with one of the natural frequencies. Therefore, although a finite plate having
length scale very much greater than the incident acoustic wavelength can be
approximately treated as an infinite plate, a wafer of 3-in radius comparing to
wavelengths of 1.5 or 2 mm (for 1 or 0.75 MHz waves, respectively) the feature columns
on the wafer may still need to consider its boundary conditions and its natural
frequencies.

WAVE IMPEDANCE OF FLUID AND MECHANICAL IMPEDANCE OF STRUCTURE

In this section we review the concepts of wave impedance and coincidence angle and
how they are related to energy transmission at a fluid–solid interface. In wave-solid

Figure 6. Acoustic Wave Interacts
        with an Infinite Plate
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interaction, both fluid acoustic impedance and mechanical impedance of a solid body
must be included to investigate the response of either the solid body or the fluid when a
wave in one of them excites the other. Wave impedance quantifies the response of a fluid
to acoustic waves, while mechanical impedance quantifies the response of a solid to
incident acoustic waves by its inertia and stiffness. Both inertia and stiffness are closely
related to incident frequency by the interface conditions. In general, high impedance
waves do not transmit acoustic energy efficiently but may still be efficient at transmitting
vibrational energy because of high particle velocities.[3] Low impedance waves, in
contrast, allow a matching between solid body waves and acoustic waves in the adjacent
fluid. If the mechanical impedance of a structure matches the acoustic impedance of the
fluid, then the energy can be effectively exchanged between the two.

The fluid acoustic impedance is defined as the ratio of the complex wave pressure and
velocity at any interface for a given frequency, Zf =( p / V)interface. The inverse of the
impedance is the mobility. By using the exponential representation of harmonic time
dependence, the real part of the impedance indicates the system resistance to the wave,
while the imaginary part indicates the system reactance to the wave, or the phase
difference between the pressure and the velocity fields. Therefore, Zf describes how well
the velocity field will cooperate with the pressure field.[3] The unit of impedance is the
same as the unit of a fluid flux [kg/m2s].

As in the example of previous section, fluid acoustic impedance of an infinitely large flat
fluid-solid interface can be derived from the same linear momentum equation of the fluid,
projecting in the direction perpendicular to the interface,

 Zf = wr0 / (k cosq) = r0 c / cosq  = r0w / (k2 – kB
2)1/2   as k > kB,

Zf Æ r0c q Æ 0, as kB Æ 0, ky Æ k,

Zf Æ •   q Æ p / 2, as kB Æ k, ky Æ 0

Zf = ir0w / (kB
2 – k2)1/2    as k < kB,   no q available, no wave.

From above expression, the fluid acoustic impedance is the fluid mass flux the waves are
subjected to along the path of their propagation. The minimum fluid acoustic impedance
for the LIGA developer is about 1.5*106 [kg/m2s] in normal incident case q = 0.
This impedance value is large due to the high acoustic wave speed, so the order of
magnitude of fluid impedance-fluid flux ratio is Zf /rov ≈roc / rov = c / v » 1.

Similar to the discussion for critical frequency, when k > kB, CB is supersonic, ky and Zf
are real, so pressure and velocity are in-phase and thus Zf  is a fluid resistance to the
wave. High wave speed or high frequency, as well as high fluid density leads to high
resistance to the waves. Two special cases are the normal incident waves and the parallel
incident waves. In the normal incident case, the wave travels as a plane progressive wave,
and the fluid wave impedance becomes r0c, the smallest, as q approaches zero. In the
parallel incident case, the fluid wave impedance will become infinitively large as q
approaches p/2. In this case, fluid impedance will become extremely large, so no bending
wave will be induced.
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In the case, as k < kB, similar to the discussion about critical frequency, cosq  and Zf
becomes imaginary, so, again, no bending wave will be induced in the solid if the plate is
acoustically excited.  The following discussion about mechanical impedance shows that if
a plate is mechanically excited, as k < kB, the wave impedance in the fluid behaves only
like an additional mass controlled mechanical impedance from a solid layer with
thickness of (kB

2 – k2)1/2. This can be understood with an effective density as r0 / (kB
2 –

k2)1/2. Therefore, the fluid layer vibrates with the solid and produces no wave in the
fluid.[4]

The mechanical impedance of a solid body is defined as Zm = F / V, in which applied
force per unit area of interface replaces the pressure in the fluid wave impedance,
indicating how well the solid particle velocity will cooperate to the applied force. The
real part of Zm is the mechanical damping to the vibration, while the imaginary part
represents the mass and the stiffness acting on the vibration to increase or reduce the
phase angle difference between solid particle velocity and the fluid wave pressure if no
other applied force is included. For a bending wave in a plate (or beam) excited by an
acoustic wave from the adjacent fluid, the applied force on the plate surface is fluid
pressure, so the mechanical impedance of the plate is derived from the bending vibration
equation[3], D—4h + m∂2h/∂t2 = -p   (h   transverse displacement of solid particle, ∂h/∂t =
v  velocity, and D  = Eh3/(1-n2)/12   bending stiffness, m = rsh  plate mass per unit area,
rs plate density). From this equation,

Zm = -i(D kB
4 – mw 2)/w  = -i(m/w)(w2

B- w 2), wB = (D/m)1/2kB
2 ,

Zm = 0,     as w  = wB coincidence

Zm = -iD kB
4/w,   as w  « wB , stiffness control

Zm = imw ,  as w  » wB , mass control

Without including other damping, Zm is purely imaginary, a reactance, so pressure and
velocity are always out-of-phase. Resistance can only come from damping (not included
here). The mass, or inertia, mw, increases the phase difference between pressure and
velocity and retards the pressure-velocity cooperation, while the stiffness, -D kB

4/w,
reduces the phase difference and helps the cooperation. HerewB is the coincidence
frequency, depending on wafer stiffness, mass, thickness and the wafer bending wave
number. The impedance will become stiffness controlled as w  « wB and inertia or mass
controlled as w  » wB. As the wafer stiffness balances its inertia, w  = wB.

Three parameters in mechanical impedance are the plate thickness h, the wave frequency
w, and the wave incidence angle q. High wave frequency results in mass controlled
response (high inertia and low stiffness), while large incidence angle results in stiffness
controlled response (large stiffness). The plate thickness h has great influence on
mechanical impedance. For a given wave frequency, the large stiffness (~h3) of a thick
plate is able to overcome the inertia (~h) resulting in stiffness control for a range of
incidence angles that is impossible for thin plates. In contrast, a thin (< 0.7 mm) PMMA
plate or beam excited by 1 MHz acoustic waves has positive imaginary Zm indicating that
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inertia or mass is controlling since the thin-plate stiffness is too weak to overcome the
inertia. Therefore, no coincidence is possible for when small feature columns with
thickness less than 0.7 mm are excited by from 1 MHz waves.

Figure 7a and b presents the variation of PMMA and silicon mechanical impedance with
wave incidence angle for 1 MHz acoustic waves, respectively.  Zm is divided by ÷(-1) to
make it real. The upper part is the mass controlled region where imag ( Zm ) >  0, while
the lower part is the stiffness controlled region, imag (Zm ) <  0. The point where each
curve crosses Zm= 0 corresponds to the coincidence angle fco discussed in next section.
The curves for thicker PMMA wafers (0.8, 1.0, and 1.2 mm) have coincidence angles,
and the incidence angle smaller or greater than its coincidence angle determines the
impedance is mass or stiffness controlled. The curves with thinner PMMA wafers (0.6,
0.4, and 0.2 mm) have no coincidence angles and are always mass controlled. All curves
for silicon wafers have smaller coincidence angles (around 20o for 1.2-mm to around 60o

for 0.2 mm), but they are hard to distinguish due to silicon’s very strong bending
stiffness, even though silicon inertia is about two times larger than that of PMMA.

Fluid acoustic impedance Zf is plotted in the small figure inside Figure 7a. Zf is always
resistance, and the greater the incidence angle, the greater the impedance. In the case of
normal incidence, surprisingly, Zf is most favorable, while Zm is the worst to retard the
wave pressure-particle velocity cooperation. Therefore, coincidence is more favorable
than normal incidence for transferring wave energy to the fluid on the other side, but does
not effectively transfer wave energy to the plate itself. At incidence angles close to 90o,
fluid wave impedance approaches infinitively large while mechanical impedance
becomes very favorable to the wave pressure and wafer particle velocity cooperation. In
this case, wave energy does not transfer to the fluid due to the mismatch of the fluid wave
impedance and the plate mechanical impedance.
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The concept of Impedance originated in electrical engineering, where electrical
impedance or resistance is equal to electrical potential divided by electrical current. In the
acoustic analog, the wave pressure corresponds to the electric potential, and the induced
velocity corresponds to electrical current, so acoustic impedance corresponds to the
electrical resistance. Thus, when many media are involved, the simple electric-circuit
analog can often be used to get the interface wave pressure and particle velocity.

COINCIDENCE ANGLE

Transmission of wave energy through a wafer is the greatest when the angle of incidence
is equal to the coincidence angle.  The coincidence angle is the wave incidence angle at
which the plate inertia offsets the stiffness, resulting in in-phase wave pressure and
velocity. This is only possible when the acoustic frequency is supercritical. In fact, in the
competition between wave frequencyw and plate coincidence frequencywB, a small wave
incidence angle favors mass-controlled impedance whereas a large wave incidence angle
favors stiffness-controlled impedance, as mentioned before. In between, there is a
coincidence angle or critical angle at which the stiffness just balances the inertia. In this
case, the fluid will transfer energy efficiently through the plate. Only damping, if there is
any, will dominate the response. Although the critical frequency, 2pwc = fc, is a special
coincidence frequency (kB = k and q = p/2), this case is excluded as discussed before.

The sine of the coincidence angle, fco, describes the portion of acoustic wave number
contributing to the bending wave number at the interface such that the stiffness of the
plate cancels the inertia. Therefore,

kB = (w2m/D)1/4,

 sin2 fco = sin2q  = kB
2/k2  = [mw2 /(D k4)]1/2 = (m / D)1/2 c2/w.

or sin2 fco = kB
2/k2= c2/ cB

2 = (2(3)1/2/wCL)(c2/h).

Because of sinfco ~ (wh)–1/2, the thicker the wafer or the higher the wave frequency, the
smaller the coincidence angle will be, in agreement with previous discussion.

Figure 8 shows the regions of
mass control, stiffness control,
and damping control by wave
incidence angle q at a
supercritical frequency for a given
plate thickness.[4]  Again, we see
the response of the plate is in the
mass or inertia controlled region
at small wave incidence angle, in
stiffness control region at large
wave incidence angle, and in
damping control region

Figure 8. Regions of Wafer Mechanical Impedance for Wave
Incidence Angle at a Single Critical Supercritical frequency

Stiffness control Stiffness control

w > wc

fcofco

Mass control
Damping controlDamping control
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immediately around coincidence angle. Energy transfer through the plate is the greatest in
the damping controlled region but weak for normally incidence waves because mass
controlled impedance retards the pressure-velocity cooperation.

Figure 9 gives the coincidence angle, fco,variation with PMMA and silicon thickness for
a variety of acoustic frequencies. At 1 MHz wave, the coincidence angles for a PMMA
plate with a thickness of 1.2, 1.0, and 0.8, are about 50o, 56o, 69o, respectively,
corresponding to the ratio of their frequencies to the critical frequency of 1.728, 1.440,
and 1.152, respectively. The coincidence angle for the 0.7 mm plate becomes 90o that
should be excluded as before. These coincidence angles depend mainly on their
frequency ratios as indicated in the small plot inside Figure 9, where the influence of
thickness is implicitly included in w /wc, This single curve is valid for any material, and it
is tangential to the line w /wc=1.

No coincidence angle is available for thin PMMA and silicon plates at sub-critical
frequency, as shown in Figure 9. Each curves has a minimum plate thickness that
corresponds to the critical frequency. As some examples listed in the Table 2, no
coincidence angle is possible when the PMMA thickness is less than about 689 mm for a
1 MHz wave, and less than 1.16 mm for a 600 kHz wave because these frequencies are
just the critical frequencies of a plate with the corresponding thickness. The minimum
plate thickness for silicon are about four times smaller because the much higher flexural
wave speeds. Thus, for megasonic waves (0.7–1 MHz), coincidence angle generally
exists only for wafer, not for PMMA feature column with thickness less than those
values.

TRANSMISSION LOSS AND ENERGY DEPOSITION IN THE WAFER
  

Four waves are involved in transmission of acoustic waves through a plate: the incident
wave and reflected wave at one side of the plate, the transmitted wave at the other side,

Frequency PMMA
Microns

Silicon
Microns

1.5 MHz 459 95

1.2 MHz 574 119

1.0 MHz 689 142

0.8 MHz 861 178

0.6 MHz 1149 237

Table 2. Max PMMA and Silicon Thickness
without a Coincidence Angle

Figure 9. PMMA and Silicon Wafer Thickness
Changes with Coincidence Angle
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and the induced bending wave in the plate, as shown in Figure 10. Here subscript ‘I’, ‘R’,
‘T’ and ‘p’ are used to identify incident, reflected, transmitted waves and plate,
respectively.

The matching conditions at fluid-solid interface are continuity of the pressure and normal
(to the plate) particle velocity. They are

pT =  pI - pR

pp =  pI + pR – pT  =  2 pR

uI cosq  –  uR cosq  =  uT cosq  =  vp

where q is the incident wave angle,  vp and pp are the normal particle velocity and the
pressure of plate, respectively. For the special case of rigid plate, no transmitted waves
and no plate movement will result. As applied in previous work for a rigid wafer, they
become
          pT =  0,  pI = pR,  pp =  2 pI,  vp =  uT =  0,  uT = – uR

On the other hand, it follows from linear momentum equation after canceling cosq  from
both sides of each equation,

 uI = pI / (r0c),        uR = pR / (r0c), uT = pT / (r0c),

The mechanical impedance per unit area of the plate thus becomes
Zp = pp / vp = 2 (pI – pT) / uT cosq = (pI / pT - 1)(2r0c)/ cosq ,

Therefore, the pressure ratio of transmitted wave to incident wave is

pT  / pI = 1 / [1 + Zp cos q / (2r0c)].

Expressing this pressure ratio in terms of fluid acoustic impedance, we obtain the
important expression:

pT  / pI = 1 / [1 + Zp / (2 Zf )] =  2 Zf /[2 Zf + Zp].

Figure 10. Transmission and Reflection of Acoustic Wave
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This expression indicates that the pressure ratio of the transmitted wave to the incident
wave is the ratio of total impedance without the plate to total impedance including plate.
The pressure ratios for reflected waves and for the plate bending wave thus are

pR  / pI  = 1-  pT  / pI =   Zp /[2 Zf + Zp].

pp  / pI  = 2 (1-  pT  / pI) = 2 (pR  / pI) = 2 Zp /[2 Zf + Zp].

Therefore, the reflection pressure ratio is the ratio of the plate mechanical impedance to
the total impedance, and the plate pressure is twice of the reflection pressure, instead of
twice of the incident wave pressure as in rigid wafer case.

The above equations illustrate the benefit of using impedances to calculate the response
at the interface without knowing other details of the fluid field and the plate movement.
Wave energy is redistributed when waves impinge on the plate. The transmission
coefficient t, and reflection coefficient r are defined as the energy intensity ratio of
transmitted wave to incident wave and reflected wave to incident wave, respectively. The
plate energy coefficient Ep is the ratio of deposited plate energy to incident wave energy.
The average acoustic power intensity, the time average power intensity, becomes
proportional to p2 or v2 because

I = (1/T) Ú 0
T pv dt = (1/2) Re(pv*) = 0.5 Re(Zf v v*)

   = 0.5v2 Re(Zf )  = 0.5 p2 Re(1/Zf*) = 0.5 p2 Re(1/Zf ),

where the superscript * means conjugate, I  the power intensity, T the period, t  the time.
Therefore,

t =  pT  / pI 2 =  1 / 1 + Zp cos q / (2r0c)2= 2 Zf /(2 Zf + Zp)2.

 r = | pR  / pI 2 =  |1-  pT  / pI|
2  =  Zp /(2 Zf + Zp)2.

Ep = ppvp/(pI
2cosq /rc) = 2 (1- pT  / pI)pT  / pI

    =  4 |Zp Zf| /|(2 Zf + Zp)|2 = 2÷t÷r.

Note that the plate energy coefficient is not simply the square of the plate pressure ratio
because the plate pressure does not obey the fluid momentum equation. This relation
indicates the wafer will obtain wave energy only if transmission and reflection coexist. At
the coincidence angle, the plate mechanical impedance becomes zero as if the plate does
not exist. In this case, t = 1, r = Ep = 0 indicating that 100% of the wave energy is being
transferred to the fluid on the wafer’s back side. For a rigid wafer, no transmission is
possible, t  = Ep = 0, r = 1.  The incident wave energy is transferred directly to the
reflected wave energy.

Addition of the three wave coefficients results in unity, showing the wave energy is
conserved. Therefore, the incident wave energy is split into three different parts:
transmission, reflection, and deposition in the plate. The percentage of each depends
completely on the fluid and plate impedance and the incidence angle.
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t +  r + Ep = ( pT  / pI + |1-  pT  / pI|
 )2 = (÷t  + ÷r)2 =  1

Together with   pT  / pI   + pR  / pI   = ÷t  + ÷r = 1, Figure 11 displays all the possible
variations of t, r, Ep and interface pressure ratio values, pT  / pI ,  pR  / pI . Here, pT  / pI  is
independent variable, t =  pT  / pI 2 , r =  |1-  pT  / pI|

2 ,  pR  / pI = 1 – pT  / pI .   Note that
pp  / pI is not included since it can be larger than 1, and its value is just the twice of the
pR  / pI. The maximum transmission t = 1 is realized only by zero r and Ep. However, the
maximum Ep = 1/2 is realized only by nonzero t and r, in which  t = 1/4, r = 1/4. In this
case, pT  / pI  = pR  / pI = 1/2.

In LIGA development, a large transmission coefficient provides great agitation to the
fluid on the backside of the wafer, i.e., good for back agitation. The large plate energy
coefficient means the wafer obtains large portion of incident acoustic energy to maintain
the forced bending waves. The feature cavities of the wafer will get better agitation by
wafer particle movement. However, the shaking of the slender features may weaken the
base.

Figure 12 presents the transmission coefficient of a PMMA wafer for 1MHz waves at
various incidence angles;  (a) through (h) are for wafer thickness of 1.2, 1.0, 0.8, 0.6, 0.4,
0.2, 0.1, and 0.05 mm, respectively.

Figure 11. Possible Energy Distribution in Transmission,
Reflection, and Deposition in Wafer
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Figure 12. PMMA Wafer Transmission, Reflection, and Wafer Energy
Coefficients (t, r, Ep) For 1 MHz Waves
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In (a) through (c), coincidence angles can be identified as 56o, 52o, and 69o, respectively,
at which t approach unity, r and Ep approach zeros, so all of the incident wave energy is
transmitted though the wafer. There is no coincidence angle in (d) through (h), because
the thickness of wafer is so thin so that 1 MHz is less than the critical frequency.
In (a) and (b), as the incidence angle increases, the transmission coefficient increases
before reaching the coincidence angle and decreases after the coincidence angle. This is
because the plate mechanical impedance first decreases toward zero, and then increases,
while the reflection coefficient and plate bending energy coefficient have just the same
trend as the plate mechanical impedance, an opposite trend to the transmission
coefficient. However, at q = p / 2, t Æ 1 is not realized because of infinitively large fluid
impedance. In (c) through (h) t increases monotonically while r and Ep decrease
monotonically since no coincidence angle is involved. Among these figures, (g) and (h)
show that t = 1 and r = 0, Ep = 0 for feature column thickness less than 100 mm,
indicating an almost completed transmission without reflection and plate energy
deposition because the feature is so thin that the plate mechanical impedance is much
smaller than fluid wave impedance.

As for the pressure ratio, at normal incidence of case (a), where h = 1 mm, the wave
pressure ratios pT  / pI , pR  / pI  , and pp  / pI are 0.37, 0.63, and 1.26, respectively. Here, the
incident wave pressure is divided between transmitted wave pressure and reflected wave
pressure, while plate pressure is double the reflected wave pressure, as a result of all three
wavesæincident, transmitted, and reflected waves interact with the plate. The energy
ratios become t = 0.14, r = 0.39, and Ep = 0.47. In this case, the plate gains almost a half
of incident energy, and the reflection energy is about 40% leaving the transmission
energy of only about 14%, as shown in Figure 12 (a) as q = 0. Comparing all (a) and (h)
at normal incidence, the thinner the wafer, the larger the transmission coefficient and the
smaller the reflection coefficient. The plate energy coefficient is around 50% that is the
maximum when the plate thickness is 0.6-0.8 mm.  This result agrees well with the
Bankert et al measurements[2]: energy probe readings drop 54% near the tank top due to
presence of the wafer. For a 0.05-mm wafer in (h), greater than 98.5% energy is
transmitted, no reflection, and less than 1.5% plate energy deposition.

Figure 13 presents the similar three coefficients of a silicon wafer for 1MHz waves at
various incidence angles. Coincidence angles can be identified in (a) through (f).
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Figure 13. Silicon Wafer Transmission, Reflection, and
Wafer Energy Coefficients (t, r, Ep) For 1 MHz Waves
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(b) h =1.0 mm
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(e) h = 0.4 mm
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In Figure 13 (a)-(d), the distinct wave energy transfer characteristics of silicon from
PMMA show that for thick plates, wave energy does not go through the plate very much
but reflects strongly from the plate except at the coincidence angles. This is due to the
mismatch of the fluid wave impedance and the plate’s mechanical impedance. For very
thin plates that are thinner than the minimum thickness required for a coincidence angle
at this wave frequency, most of the wave energy goes through the plates, and
surprisingly, (g) and (h) for 0.1 and 0.05 mm are very similar to (f) and (g) in Figure 12
for 0.2 and 0.1 mm PMMA plates. Silicon plate gain about 30-50% wave energy at small
incidence angles for (a) through (h) cases, and at almost all incidence angles for (c) case.

Suppose a PMMA resist having a 1-mm silicon substrate. The total mechanical
impedance of this multilayer will be the sum of the impedances of PMMA and silicon.
Since the 1-mm silicon mechanical impedance is stronger in stiffness and inertia , it
dominates the multilayer impedance for all the PMMA thickness considered here. The
effective impedance curves almost overlap as one curve, and the corresponding energy
coefficient curves are very similar to those of silicon. In contrast, if the silicon substrate
is thin, then it will not affect very much since the mechanical impedance Zm ~ h.

Figure 14a and b presents the variation of transmission coefficient with incidence angle
for a frequency of 1 MHz and for a few of PMMA and silicon wafer thickness,
respectively, ranging from thick to thin wafers. The coincidence angle swifts to the right
when increasing incidence angle for thick wafer and disappears for the thin wafer. Again,
case q = p/2, t = 1 is unrealistic. Again, silicon has smaller coincidence angle for the
same thickness compared with PMMA.

The transmission loss (TL) or refraction index (R) is defined as TL = 10 log10 (1 / t). The
unit is decbel (dB), representing the wave intensity loss by transmission in decimal log-
scale (3 dB of TL means transmitted power about a half, 6 dB to a quarter, etc.) For
example, t = 0.14 in above normal incident example corresponds to TL = 8.54 dB. From
expression of t,

Figure 14a. Transmission Coefficient of
PMMA Wafer (f = 1MHz)
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           Silicon Wafer (f = 1MHz)
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TL = 10 log10 [1 + Zp cos q / (2r0c)2]

      = 10 log10 [1 + (D kB
4 – mw 2) cos q / (2r0cw)2]

      = 10 log10 [1 + m (w 2- wB 2) cos q / (2r0cw)2],

where the plate bending stiffness D  = Eh3/(1-n2)/12,   Poisson ratio n, and  wB =
(D/m)1/2kB

2.

Regarding the transmission loss varied with frequency, Figure 15a and b presents the
variation of transmission loss with wave frequency up to 2 MHz for a 30o incidence angle
and for a few PMMA and silicon wafer thickness, respectively. A typical damping that is
about 2% of the stiffness (usually including interface and material damping) was included
to make the results more realistic. At 1 MHz, waves transmitted through a 1- mm PMMA
wafer at 30o incidence have a transmission loss of about 6.58 dB (t = 0.22), which is
greater than for all other thinner wafers, but smaller than in the normal incidence for the
same wafer where TL = 8.54 dB  (t = 0.14), as in Figure 12a. For wave frequencies lower
than 1.5 MHz, a thicker PMMA wafer results in the greater loss, as in previous two
figures. At higher frequency, the curves for thick wafers go down from their maximum
values toward the coincidence cases at which 30o will become the coincidence angle at
corresponding frequencies and the loss are the minimum. At 1 MHz, all silicon wafers at
30o incidence have large transmission losses except at the frequencies close to its
coincidence frequency due to silicon’s large mechanical impedance.

Figure 16a and b presents the variation of transmission loss of 1-mm PMMA and silicon
wafer with frequency ratio (to critical frequency) for several incident wave angles,
respectively, for frequency up to 2 MHz. Silicon has much smaller wc and much larger
transmission loss. Again, a typical damping that is equal to 2% of the stiffness was
included. Transmission losses for normally incident waves are greater than for waves

Figure 15a. Sound Reduction Index of PMMA
      Wafer for 30o Wave Incidence Angle
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with small incidence angles as w /wc < 2.2  (< coincidence angle) but smaller for waves
with large incidence angles (> coincidence angle), as frequency ratio greater than 2.2.

For incidence angle greater than 40o for PMMA and 20o for silicon, the transmission loss
achieves a minimum (coincidence case) for a frequency ratio of about 2.5 (PMMA) and
8.5 (silicon) and then increases at greater frequencies. For a 1 MHz wave that has a
frequency ratio of 1.44 for PMMA and 7.6 for silicon transmitting through a 1-mm
wafer, the transmission loss is close to 9 dB and 14.6 dB, respectively, for a normally
incident case, which agrees with the previous PMMA transmission loss value. Again, the
case with 90o should be excluded.

FORCED AND FREE BENDING WAVES IN A FINITE PLATE

All of the previous discussion is based on unbounded fluid and an infinite plate.
However, in the actual process of LIGA development, a finite wafer is immersed in a
finite tank of liquid developer. The Sandia LIGA group uses a megasonic cleaning tank
made by PCT Systems.[5]  The molded quartz tank is stress free, and has very low natural
frequencies (< 2 kHz), so no vibration of the tank will result from response to megasonic
acoustic frequencies (> 700 kHz). Therefore, the tank can be approximated as a rigid
tank, but the natural frequencies of the finite wafer may need to be considered.

The response of a finite plate to an incident acoustic wave is much more complex than
that for an infinite plate. The natural frequencies and modes of the plate may be excited
in a resonance or non-resonance response. In fact, the incident wave frequency, the plate
critical frequency, and the lowest (fundamental, or base) natural frequencies of the plate
all play critical rolls in wave-plate interaction. The situation is similar to some extent in a
single-degree-of-freedom system (mass-spring-damper). Whether a finite system
response to a disturbance is mass dominant, stiffness dominant, or damping dominant,

Figure 16a. Sound Reduction Index for 1-mm
PMMA Wafer In Liquid Developer
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Silicon Wafer In Liquid Developer

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14
 

 
Tr

an
sm

is
si

on
 L

os
s 

[d
B]

w/w
c

normal incidence f = 0

20o

30o

40o

50o

60o

80o

90o



27

depends on whether the incident frequency is higher, or lower, or very close to
(resonance case) the base natural frequency. In the present case, the critical plate
frequency is also a significant parameter. At supercritical frequencies for PMMA wafers
and subcritical frequencies for wafer’s features, megasonic frequencies are greater than
the base natural frequencies of both a PMMA wafer and its feature columns.

Because of lB / l  = (f / fC )1/2, when the incident wave frequency is greater than the plate
critical frequency,  f  >  fC and hence lB > l , k > kB, a supersonic forced bending wave is
induced in the plate with the incident wave frequency, the same as for an infinite plate. If
the wave frequency overlaps one of the natural frequencies, resonance will occur. For
example, for a rectangular plate, resonance occurs when f = fmn, kB = kmn where subscript
mn corresponds to natural frequency. Free bending wave, or non-resonance bending
waves may also be induced if the incident wave and the plate bending waves match
spatially (wavelength), instead of frequency-wise.[3]  In this case, mass dominates the
bending wave, and damping dominates the resonance.

When the incident wave frequency is smaller than the plate critical frequency, f < fC, and
hence lB < l , k < kB, no bending wave is induced in an infinite plate. For a finite plate,
however, this is no longer true due to the boundary conditions. If the wave frequency is
greater than the base natural frequency, f0 < f, a subsonic forced bending wave can still be
induced. An acoustic wave transmission will pass through the plate, and the response will
be mass controlled. Looking at the wave number for a rectangular plate, even if k < kmn =
÷(kx + kz), one of kx and kz is still possibly smaller than k, making the subsonic bending
wave propagating possible. However, this wave energy cannot be transmitted efficiently,
or it is relatively weak and slow.

Transmission losses can be generally separated into four classes: stiffness, resonance,
mass, and coincidence controlled. In our cases, the wave frequency is higher than wafer
bending critical frequency, but is lower than wafer feature bending frequency. Therefore,
the wafer transmission loss increases with incidence angle due to mass control when the
wave incidence angle is less than coincidence angle, or decreases due to stiffness control
when the wave incidence angle is larger than coincidence angle, or drops sharply due to
coincidence (damping) control. However, the likelihood of resonance for the wafer is
zero (see next section examples). Unlike the infinite case, subsonic bending waves can be
induced in wafer features, and the transmission loss is usually mass controlled.  If
resonance happens, features will get most of the energy.

EXAMPLES OF NATURAL FREQUENCIES AND NATURAL MODES

From the flexural vibration equation without a load, a beam with a clamped end at x = 0
has the solution:[6]

h = C1 (cos kx – cosh kx) + C2 (sin kx – sinh kx)
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where h is the amplitude of the motion and k4 = w2/(D/m). With a free end at x = l, it is
required that

cos kl cosh kl = -1,

so k1l = 1.875, k2l = 4.694, k3l = 7.855, k4l = 10.996, k5l = 14.137, k6l = 17.279,… The
base frequency becomes

f1 = w/2p = k1
2(D/m)1/2/2p  = (1.875/l)2{Eh3/[12(1-n2)rsh]}1/2/2p  so f ~ h/l2.

Here l and h denote length and thickness, respectively. The thicker the plate or beam, the
higher the natural frequency will be due to the bending stiffness; and the longer the
length, the lower the natural frequency will be due to the smaller wave number.

Table 3 presents the first two frequencies for varied PMMA wafer feature column
thickness and length. The base natural frequencies for PMMA feature columns having a
thickness up to 200 mm and a length from 500-1000 mm are less than 250 kHz and are far
less than megasonic frequencies of interest. However, the second natural frequency for
lengths of 500-600 mm can reach over 700 kHz when the thickness is as large as 100-200
mm, comparable to megasonic frequencies. For higher modes, the natural frequencies are
even higher. However, interface damping and material damping greatly reduce the
amplitude of the higher natural modes.

To illustrate the natural flexural modes of a beam with one clamped end and one free end,
Figure 17 includes sketches of the first five vibration modes.[3]  Notes that the bending
shapes of the beam are over exaggerated in transverse direction to be clearly seen. These
forced or free natural modes may cause the feature column to break off the wafer base
even though the frequencies are not high.
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Using a square PMMA and silicon wafer model that has a larger thickness (h = 500-1200
mm) and very much larger length (l = 0.1-0.15 m) than a feature column, together with
the one clamped edge and three free edges, the natural frequencies of the wafer are at
least three orders of magnitudes smaller than that for feature columns because of f ~ h/l2.
Thus, the first several frequencies can be ignored comparing with the megasonic acoustic
wave frequencies and the higher modes are strongly suppressed by damping. Table 4
presents the first three natural frequencies in Hz instead of kHz for PMMA wafer
thickness from 800-1000 mm and wafer length from 10 to 20 cm. Although a silicon
wafer has about five times higher natural frequencies due to f ~ D1/2 ~ CL, these
frequencies are still very low. Figure 18 gives the corresponding mode shapes for first
five natural frequencies. The dash lines indicate the traces of the flexion points.
Therefore, for the high frequency modes, the mode shapes become very complicated, and
the flexion points spread over the wafer.

For a more realistic circular wafer with a free edge except for a single clamped point, the
order of magnitudes of the natural frequencies and the natural modes should be very
similar to that for a square plate. Moreover, the mathematical problem becomes much
more difficult to solve without requiring a numerical approach such as ABAQUS. For
these reasons and the expectation of very low natural frequencies, there is little reason for
further investigation.
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DISCUSSION

This work assesses the influence of elasticity on the response of a wafer and its features
to megasonic waves. We studied an elastic wafer subjected to acoustic agitation in a
LIGA development tank. The response is more complicated than that for a rigid wafer.
Not only reflected waves, but also transmitted waves are generated because some of the
incident wave energy passes through the wafer. In addition, supersonic bending waves
are likely induced in the wafer because some of the incident wave energy is deposited in
the wafer. Furthermore, the boundary shape and stiffness of the wafer and its feature
columns determine natural modes and natural frequencies. These modes might interact
with the incident waves to cause resonance.  What does the influence of all these facts
bring to LIGA development?

The megasonic frequency typically used in LIGA development is usually supercritical for
a sufficiently thick wafer, but subcritical for wafer features having dimensions orders of
magnitude smaller than the wafer. The critical bending frequency is determined by the
bending stiffness and incident wave frequency and direction. When an incident frequency
is supercritical, incident waves induce supersonic bending waves in the wafer. Since an
acoustic wave frequency of 1 MHz is a supercritical frequency for a wafer thickness
greater than 689 mm, this should usually be true of LIGA wafer. The incident wave
energy can generally be channeled into three components, transmitted, reflected and
energy deposited to the wafer, if damping (usually only 2- 5%) is not included. How this
energy is distributed among the three depends on the wafer bending stiffness and inertia,
and hence depends on the wafer material, thickness and wave incidence angle.

Wafer bending stiffness and inertia result comprehensively from wafer thickness, wave
frequency, and wave incident angle.  Large wafer thickness results in large wafer bending
stiffness, while small wave incidence angle (not far from normal incidence) results in
small wafer stiffness, and high incident wave frequency results in large wafer inertia.
Mass controlled response in which wafer inertia dominates the response suppresses the
fluid pressure and wafer particle velocity cooperation at the fluid-wafer interface, while
stiffness controlled response promotes this cooperation at the interface.  Coincidence
angle is the angle at which the bending stiffness offsets inertia, resulting in transmitted
waves almost as strong as incident waves, leaving almost no reflected waves, and no

Figure 18. The First Five Natural Flexural Modes for the Square Plate
(Clamped left side and free right, top and bottom sides)
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energy deposition in the wafer. Coincidence angles exist only at supercritical incident
frequencies because inertia is too weak to compete with stiffness at subcritical incident
frequencies. As an example, the coincidence angle is 56o for1-mm PMMA at 1 MHz
waves. At this angle, incident wave energy is almost completely transmitted through the
wafer. For other incidence angles, wafer response is mass controlled at smaller incidence
angles and stiffness controlled at larger incidence angles. Therefore, when an incident
frequency is subcritical as expected for LIGA wafer features, transmitted energy
dominates and increases monotonically with incident angles while reflected energy and
wafer energy are secondary and decrease monotonically with incident angles. When an
incident frequency is supercritical as expected for LIGA wafers, however, transmitted
energy does not dominate and does approach maximum at coincidence angles while
reflected energy and wafer energy approach minimum at coincidence angles.

The sound reduction index, or refraction index, or transmission loss (not including
damping) measures wave intensity loss in a decimal log scale. This loss is due to the
energy carried away by reflection and deposited in the wafer. For example, at normal
incidence, 1-MHz waves transmitted through a 1-mm wafer are reduced by a 9 dB loss.
PMMA wafer-gained energy can be as large as 50% of the incident wave energy under 1
MHz acoustic waves, when incident wave angle is less than 40o for wafer thickness
greater than 800 mm, or less than 30o for wafer thickness of 600 mm, because the wafer’s
response is mass controlled, and incident wave energy flux impinges strongly to the
wafer. This result agrees very well with the measurement by Bankert et al. In contrast,
when the incident wave angle becomes large, or wafer becomes thin, then the wafer will
not gain significant energy, because the wafer’s response is stiffness controlled, and the
transmission loss is small.

The natural frequencies of a wafer are extremely low (< 100 Hz), so wafer resonance is
not likely for incident megasonic waves. PMMA wafer feature columns have natural
frequencies many times higher than that of the wafer, but the base natural frequencies are
still low comparing with megasonic waves. Subsonic bending waves can be induced in
wafer feature columns due to their finite boundaries. For a thicker and shorter feature
column, resonance may occur.

Damping is a source of the transmission loss not considered here.  However, interface
damping and material damping usually contribute no more than 2-5% relative to the
material stiffness that is included in our modeling. These mechanisms suppress the high
frequency natural modes.

Acoustic absorption in fluid media is due to viscosity so that the wave energy dissipates
into heat. The wave energy absorption coefficient in liquid is  a = (2hw2)/(3 r0c3),[3]

where h is viscosity. For water, a /f2 = 24*10-15 s2/m, which provides a reasonable
estimate to the value appropriate for the liquid developer. This dissipation mechanism is
very small for a 1 MHz acoustic wave, about 2.4% in a meter while the development tank
height is much smaller, about 1/6 of a meter.
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In summary, in LIGA development, transmitted waves produce acoustic motion of the
developer on the backside of the wafer, especially for the coincidence case in which
almost all incident wave energy transfers to the backside. This fluid motion should
provide the same benefits as acoustic motion on the incident face. In addition, wafer
bending waves cause wafer material to oscillate at high frequency, which may also
promote the development process. Resonance occurring in wafer feature columns may
also induce large relative movement of the fluid in feature cavities resulting in good
agitation. This shaking of the features may also weaken feature bases. However, the
likelihood of resonance is limited to columns that are relatively short and wide and,
hence, least likely to be broken away from the substrate.

Since the LIGA development tank has a row of transducers working sequentially in time,
the incidence angle of megasonic waves will change frequently during development,
resulting in the frequently changed ratio of wafer stiffness and inertia. As a result, both
wafer faces are almost continuously stimulated by incident waves and transmitted waves
in which all mass controlled, stiffness controlled, and coincidence cases are involved.
This time averaging of the effects of waves from both sides and at various angles helps to
improve process uniformity across the wafer face, and reduces the sensitivity to wafer
thickness, wafer inclination angle, and other details of a specific configuration.

ACKNOWLEDGMENTS

The present work was funded by Materials and Physics Models Project of the Sandia
Accelerated Strategic Computing Initiative.  Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy under contract DE-AC04-94AL85000. The author would like to
thank R. H. Nilson and L. Hunter for their thoughtful discussion and review.



33

REFERENCES

1. Aili Ting, “Pressure Waves Induced by Megasonic Agitation in a LIGA
Development Tank”, SAND Report, SAND2002-8333.

2. M. A. Bankert, D. Larsen, A. Ting, L. L. Hunter, R. H. Nilson, S. K. Griffiths, C.
C. Henderson, “Measuring the Acoustic Energy Distribution in a Megasonics
Development Tank”. The Fifth International Workshop on High Aspect Ratio
Micro-Structure Technology (HARMST 03), Monterey, CA, June 15-16, 2003.

3. M. P. Norton, Fundamentals of Noise and Vibration Analysis for Engineerings,
CAMBRIDGE UNIVERSITY PRESS, 1989.S.

4. F. Fahy, Sound and Structural Vibration: Radiation, Transmission and Response,
ACADAMIC PRESS, 1985.

5. PCT Systems, Inc, Instruction Manual for Tiger Tank Hyperclean Megasonic
Cleaning System, October 1996.

6. Timoshenko, D. H. Young, W. Weaver, Jr., Vibration Problems in Engineering,
Fourth Edition, JOHN WILEY & SONS, 1974.

7. M. C. Junger and D. Feit, Sound, Structures, and Their Interaction, THE MIT
PRESS, 1986.



34

DISTRIBUTION:
1 MS 0835 J. M. McGlaun, 9140
1 MS 0824 W. L. Hermina, 9110
1 MS 0834 J. E. Johannes, 9114
1 MS 0826 S. N. Kempka, 9113
1 MS 0834 K. S. Chen, 9114
1 MS 9001 M. E. John, 8000

Attn: D. R. Henson, 8200 MS 9007
R. H. Stulen, 8100, MS 9004
W. J. McLean, 8300, MS 9054
K. E. Washington, 8900, MS 9003

1 MS 9401 J. M. Goldsmith, 8751
1 MS 9401 L. L. Hunter, 8751
1 MS 9401 M. E. Malinowski, 8751
1 MS 9401 S. Mrowka, 8751
1 MS 9042 C. D. Moen, 8752
1 MS 9042 G. H. Evans, 8752
1 MS 9042 S. K. Griffiths, 8752
1 MS 9042 W. G. Houf, 8752
1 MS 9042 R. S. Larson, 8752
1 MS 9042 R. H. Nilson, 8752
10 MS 9042 A. Ting, 8752
1 MS 9042 W. S. Winters, 8752
1 MS 9401 G. Aigeldinger, 8753
1 MS 9401 M. A. Hekmaty, 8753
1 MS 9401 D. R. Boehme, 8753
1 MS 9401 J. T. Hachman, 8753
1 MS 9401 A. M. Morales, 8753
1 MS 9401 F. J. Pantenburg, 8753
1 MS 9401 D. M. Skala, 8753
1 MS 9401 T. I. Wallow, 8753
1 MS 9405 J. M. Hruby, 8700
1 MS 9405 K. L. Wilson, 8770

 Attn: W. C. Replogle, 8771, MS 9409
                       C. H. Cadden, 8772, MS 9402
                       J. C. F. Wang, 8773, MS 9403
                       P. A. Spence, 8774, MS 9042

MS 9404 G. D. Kubiak, 8750
  Attn:  J. R. Garcia, 8754, MS 9404

1 MS 9161 W. R. Even, 8760
  Attn: D. L. Medlin, 8761, MS 9161
                T. J. Shepodd, 8762, MS 9403

                       E. P. Chen, 8763, MS 9161
3 MS 9017 Central Technical Files, 8945-1
1 MS 0899 Technical Library, 9616
1 MS 9021 Classification Office, 8511/Technical Libarary, MS 0899, 9616
1 MS 9021 Classification Office, 8511 for DOE/OSTI


